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Universality in hydrogen-bond networks
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%'e present several lattice models for water that belong to the universality class of Angell's

independent-bond model. The relevance for real water, the relationship to percolation models for wa-

ter, and the possible use of these models in simulations of protein-solvent systems is discussed.

PACS number(s): 61.20.Ne, 61.20.Ja, 35.20.Gs

Hydrogen bonds play an important part in the structure
of liquid water. For example, ir-absorption experiments
[1], molecular-dynamics (MD) simulations [2-4], and
percolation models [5] suggest that in liquid water there is
always a percolating cluster of hydrogen-bonded water
molecules. Moreover, in most molecular biological sys-
tems hydrogen bonds are responsible for the secondary
and tertiary structure [6]. Common to all these cases is
that a network of hydrogen bonds is present at the tem-
peratures of interest. At nonzero temperatures, these
bonds will Auctuate, i.e., they will open and close random-
ly, due to thermal Auctuations.

We have investigated the thermodynamic properties of
several lattice models for water based on water molecules
that interact only via hydrogen bonds [7]. The basic one
is an extension to nonzero temperatures of the square-ice
model by Lieb [8], which we termed, consequently, square
water (SW). Water molecules, whose allowed conforma-
tions are shown in Fig. 1, are placed densely on a square
lattice. The conformations of Fig. 1 arise by projecting
the almost tetrahedrical hydrogen-bond structure of a wa-
ter molecule into the plane, while retaining the local con-
nectivity of a diamond lattice [8]. Translational degrees
of freedom are disregarded for simplicity. Hydrogen
bonds are possible between neighboring water molecules if
the 0—H bond of one molecule faces the oxygen of the
next molecule (see also Fig. 1). We denote the energy of
a closed hydrogen bond by —e. The restriction of the al-
lowed orientations of ~ater molecules to the conforma-
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tions of Fig. l is motivated by the strongly directional na-
ture of hydrogen bonds [9]. SW was analyzed by Monte
Carlo (MC) simulations [7], and the temperature depen-
dence of the average number of hydrogen bonds per mole-
cule, (nH), and of the specific heat due to hydrogen-bond
Auctuations, c,, /ktt =(ps)'&BnH)/4, are shown in Fig. 2
(note that BnH =nH —(nH), and P =1/ktt T, with absolute
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I IG. 1. Allowed conformations of water molecules on the
square lattice in the SW model; closed hydrogen bonds are indi-
cated as dotted lines.
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FIG. 2. (a) Average number of hydrogen bonds per molecule,
&nH&, and (b) specific heat e, , vs temperature for the models dis-
cussed in the text; ( ) independent-bond results, Eqs. (2)
and (3), respectively; (0) results from MC simulations of SW
on a 50X50 lattice with periodic boundary conditions [7]; (&&)

results from MC simulations of 8% on a 12X12x12 lattice with
periodic boundary conditions [71; the error bars for the MC re-
sults are in (a) less than and in (b) about the size of the sym-
bols.
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c,./ks =
4 (Pe) (BrlN) = InZla

(Ps)' d'

(3)

(nH) and c,, in Eqs. (2) and (3) show the same behavior as
the mean energy and the specific heat, respectively, in the
one-dimensional Ising model [11],which can be regarded
as a particular realization of an independent-bond system.
Figure 2 demonstrates that the simulation results from
SW and BW follow closely the analytical results of Eqs.
(2) and (3).

Another lattice model which we termed sirrtpliPed
square water (SSW) is arrived at by omitting the
stretched configurations of Fig. I in SW (i.e., reducing the
number of allowed conformations), and can be solved ex-
actly [7]. It leads —asymptotically in the thermodynamic
limit —to a partition function identical to Eq. (I ).

These similar results for various lattice models, together
with their description by the independent-bond model,
lead us to the hypothesis that there exists a (possibly
large) class of hydrogen-bond network models whose ther-
modynamic behavior is governed by the independent-bond
theory given in Eqs. (1)-(3). Because the models in this

temperature T and Boltzmann's constant ks). We have
also investigated a three-dimensional extension of SW by
putting the water molecules with their tetrahedrical
hydrogen-bond structure on a diamond lattice (which has
a coordination number of four like the square lattice).
Due to the peculiar connectivity that arises when a dia-
mond lattice is, for computational reasons, represented as
a simple-cubic lattice, we termed this model brick ~ater
(BW). This model was analyzed again by MC simula-
tions [7], and the results are also shown in Fig. 2.

The behavior of both models, BW and SW, is very simi-
lar and it can readily be described by an independent-
bond approach due to Angell [10]. We give here a deriva-
tion slightly different from Angell s original paper. In this
approach, the partition function of a hydrogen-bond net-
work factorizes into the contribution from the N possible
independent bonds in such a network. Since each of these
bonds can only be open or closed, the resulting indepen-
dent-bond partition function Z~q is

Z =Z = (1+eP')

where Zsa denotes the single-bond contribution. In dense
systems, like ice and liquid water, one can assume that, in
principle, every possible hydrogen bond of a water mole-
cule may be closed. Since water rnolecules can participate
in up to four hydrogen bonds, regardless of the actual to-
pology of the hydrogen-bond network, the maximum
number of possible hydrogen bonds in ice and water is
N =2M, where M is the number of water molecules in the
network. From the partition function, Eq. (I), the per-
tinant observables like the average number of hydrogen
bonds per molecule, (nH), and the specific heat c,, can be
deduced easily:

1 d
I

2/V e~'
(nH) = — Inzla =

Me d M I+e~'

universality class exhibit a similar thermodynamic behav-
ior over the whole temperature range, in the thermo-
dynarnic limit the partition function Z of a particular
hydrogen-bond network model should have the asymptotic
form

Z =Zlaexp(MS /ks), (4)

where M is the number of molecules, and S is the zero-
ternperature entropy of the model in question. For exam-
ple, for SW this is the entropy of the square-ice model [8],
Ssw/ks = —', ln —", , and for SSW it is zero [7].

The above considerations were limited to hydrogen-
bond networks in which the translational degree of free-
dom is frozen. Therefore, the results are applicable, for
example, to hydrogen bonds in ice. However, we believe
that those results are not limited to ice, but the considera-
tions leading to the above results are also relevant for
hydrogen-bond networks in the liquid state, particularly in

liquid water. From the point of view of statistical
mechanics, the liquid state can be viewed as a collection of
different spatial arrangements of molecules. For each of
these configurations the above independent-bond ap-
proach for the evaluation of the partition function can be
employed. In liquid water we can assume that for most of
the relevant configurations N =2M holds, the resulting
thermodynamic behavior being the same as above. The
partition function will simply be renormalized by the ap-
propriate entropy, as in Eq. (4).

For a comparison with real water the temperature scale
has to be adjusted by viewing the single free parameter in
the independent-bond theory, the hydrogen-bond energy e,
as an effective free energy:

8 =8 To (5)

This generalization is necessary in order to account for en-
tropy differences between open and closed hydrogen bonds
due to other degrees of freedom (which show up, e.g. , in
different vibrational spectra) as already noted by Angell
[10]. He obtained the parameters e'=1.3X 10 J and
o'=3.3&&10 J/K from a comparison with data [12] on
the configurational contribution to the specific heat of wa-
ter. e' is well within the range of energies discussed for
hydrogen bonds (from 9 x 10 ' to 3 x 10 J, see Ref.
[12]). In Fig. 3 we compare the independent-bond results
for (nH) using these parameters with experimental results
on water [13] and MD results on ST2 water [4], data that
were not available at the time of Angell's work. As can be
seen, the MD results follow the behavior of the inde-
pendent-bond results very closely. We note, however,
that, due to the choice of the cutoff distance for assigning
hydrogen bonds, there is also a free parameter involved in
the results of MD simulations [4, 14], which allows for a
possible shift of those results along the vertical axis. Un-
fortunately, no MD results on the part of c,, that originate
from hydrogen-bond Iluctuations are available. The ex-
perimental results on (nH) for water are reliable only at
T=0'C. At higher temperatures those data of Ref. [13]
give just lower limits to the actual values. Both the MD
results and the independent-bond results are compatible
with those data.

The success of the independent-bond approach in
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pH & & holds for temperatures up to about 400 K and is,
therefore, well above the percolation threshold of most lat-
tices [16], particularly in three dimensions. This result
corroborates the existence of a percolating cluster of
hydrogen-bonded water molecules in liquid water [1,4,5].
Due to the independence of the bonds from one another,
the distribution fi of water molecules with j bonds follows
a binomial distribution [5],

fj =(J')pH(I —pH)' '. (6)
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FIG. 3. Average number of hydrogen bonds per molecule,
&nH), vs temperature; ( ): independent-bond results with
e' 1.3x10 ~0 J and a' 3.3&10 J/K from Ref. [10]; (---)
and (-.- ): results from MD simulations [4] for two different
values of the energy cutoff for a hydrogen-bond assignment
(VHs 2. 1&10 J and VHB 2.5& 10 J, respectively); and
(&): experimental results from liquid water [13];we note that
the experimental results for T&0 C are extrapolations and
give only lower limits to the actual values [13].

describing the thermodynamic properties of more micro-
scopic models for hydrogen-bond networks and of real wa-
ter provides also a justification for an alternative descrip-
tion of water in terms of bond percolation models. Such
models for water have already been analyzed extensively
[5,15]. The pertinent parameter in those models, the
probability pH of a particular hydrogen bond to be closed,
is related to the average number of hydrogen bonds per
molecule by pH =(nH)/4 in the case of water. Using Eqs.
(2) and (5) and the above parameters it can be seen that

This distribution is a general feature of most water models
[15], in particular, it is observed in MD simulations [14].
The results of the independent-bond approach go beyond
the results of percolation models in that the temperature
dependence of pH and, consequently, of fi is predicted.

Despite its simplicity, the independent-bond model is a
surprisingly good description of the hydrogen-bonding be-
havior of water [10]. Although its quality was recognized
early on [17,18], in recent publications on this topic it is
hardly mentioned anymore [2,15,19], undeservedly as we
believe. The simple lattice models we introduced in this
contribution belong to the universality class of the inde-
pendent-bond model and provide, therefore, an equally
good description of the hydrogen-bonding behavior of wa-
ter. Moreover, this equivalence supports the use of such
models for studying, at least qualitatively [20], solvent-
solute interactions in situations still too complex to be an-
alyzed by detailed MD simulations. A foremost candidate
is the solvent-protein interaction. Hydrogen bonds prob-
ably are the main contribution to this interaction. For ex-
ample, the reduction of accessible volume for the protein,
due to hydrophobic interactions, is discussed to be the
main driving force of protein folding [21]. We note that
in the SSW model hydrophobicity and hydrophilicity of a
solute molecule, as measured by the free-energy change,
can be evaluated analytically, with qualitatively correct
results [22].
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